News

Ihre Auswahl

heilen,produzieren,forschen / 12.01.2017
Eine völlig neue Wirkstoffklasse

 Proteo-Mimetika erlauben erstmals, in Protein-Protein-Wechselwirkungen innerhalb der Zellen
einzugreifen. Diese Technologie soll in einem Spin-off des FMP entwickelt werden.

Eine Innovation, die am Leibniz-Institut für Molekulare Pharmakologie (FMP) entwickelt wurde, könnte zu neuen Ansätzen in der Krebstherapie führen: Erstmals ist es gelungen, Wirkstoffe zu entwickeln, die Wechselwirkungen von spezialisierten Proteindomänen mit Prolin-reichen Sequenzen anderer Proteine innerhalb von Zellen unterbinden. Derartige Wechselwirkungen sind an vielen krankheitsrelevanten Prozessen wie beispielweise an der Tumormetastasierung beteiligt und galten bisher als „undrugable“, also nicht als therapeutisches Ziel nutzbar. Möglich wird der vielversprechende Schritt durch eine ganz neue Klasse von Wirkstoffen, den so genannten Proteo-Mimetika (ProM). Sie wurden von der FMP-Arbeitsgruppe von Dr. Ronald Kühne, „Computational Chemistry / Drug Design“, in Kooperation mit dem Institut für Organische Chemie der Universität Köln entwickelt und eröffnen völlig neue Möglichkeiten für Therapien.

Die meisten der gegenwärtig eingesetzten Medikamente binden an leicht erreichbare Strukturen, zum Beispiel an Proteine, die sich an der Zelloberfläche befinden. In der Folge können dann Signalwege in der Zelle blockiert oder aktiviert werden. Da diese Signalwege häufig in vielfältiger Weise miteinander vernetzt sind, besteht die Möglichkeit, die Blockade zu überwinden und Resistenzen zu entwickeln. „Es gibt Arzneimittel zur Therapie von Krebserkrankungen, deren Ziel es ist, Rezeptoren, die chemotaktische Signale an der Oberfläche der Zellen empfangen, auszuschalten. Obwohl dies zunächst gelingt, schaffen es einige Krebszellen, die Wirkung der Therapie durch biochemische Veränderung, z.B. die Aktivierung von anderen Signalwegen, aufzuheben. Das Problem besteht darin, dass die Medikamente am Beginn einer vernetzten Signalkette ansetzen“, erklärt Dr. Ronald Kühne. „Die neuen Proteo-Mimetika hingegen ahmen bestimmte räumliche Strukturmotive von Eiweißmolekülen nach und entfalten ihre Wirkung im Inneren der Krebszelle, indem sie gezielt die Wechselwirkung von bestimmten Proteinen am Ende von vernetzten Signalwegen blockieren. Hier sind die Möglichkeiten der Krebszelle, durch Aktivierung anderer biochemischer Prozesse Therapieresistenz zu erreichen, in starkem Maße eingeschränkt. Voraussetzung ist allerdings, dass die Wirkstoffe den Wirkort im Inneren der Zelle überhaupt erreichen können.“ Dies konnte im Falle der neuen Wirkstoffklasse von Dr. Kühnes Team nachgewiesen werden.

Der erfolgreichen Entwicklung der ProM-Bausteine ging eine jahrelange Suche nach einer neuen, prinzipiellen Lösung voraus, die sich erst durch radikales Umdenken fand: „Warum ausgerechnet eine sehr seltene Sekundärstruktur eine so bedeutsame Rolle bei der Invasion von Krebszellen spielt, haben wir zunächst nicht verstanden. Hinzu kam die Erkenntnis, dass selbst kleine, auf den ersten Blick harmlose Veränderungen in der für diese Sekundärstruktur wichtige Peptidsequenz zum totalen Funktionsverlust führten. Wir haben alles Mögliche chemisch probiert und sind immer gescheitert. Bis wir auf die Idee kamen, diese Sekundärstruktur durch neuartige organische Moleküle möglichst perfekt nachzubilden. Eine große Hilfe war dabei das computergestützte Design, auf dessen Basis unsere Partner an der Universität zu Köln die ersten ProM-Bausteine synthetisieren konnten“, so Dr. Kühne.

Zellwanderung unterbunden

In einem ersten Schritt gelang es den Forschenden, auf Basis ihrer neuen Bausteine einen Wirkstoff zu entwickeln, der die Zellwanderung hemmt und damit die Ausbreitung aggressiver Brustkrebszellen verhindert. Dieser Wirkstoff bindet an die Proteine der Ena / VASP-Familie und verhindert, dass sich Zellfasern ausbilden, die eine ähnliche Funktion wie Muskeln und Knochen des menschlichen Bewegungsapparates haben. Die invasiven Krebszellen werden in Form, Beweglichkeit und Orientierung so stark eingeschränkt, dass sie nicht mehr wandern können. In Verbindung mit Chemotherapeutika könnte diese Behandlung die Überlebensrate deutlich steigern, wie die Wissenschaftler hoffen.
„Bei der Metastasierung entwickeln sich einige wenige Krebszellen des Tumors in stammzellähnliche, entdifferenzierte Zellen zurück. Diese unterscheiden sich bereits vom Primärtumor, da sie eine an-
dere biochemische Charakteristik haben und sich nicht mehr so stark teilen. Eine Chemotherapie zielt jedoch auf die sich schnell teilenden Tumorzellen. Die stammzellähnlichen Zellen sind unempfindlich
dagegen“, so Dr. Kühne, „Normalerweise überleben einzeln wandernde Zellen im Blutkreislauf gar nicht, da es viele mechanische Hindernisse gibt. Von einer MillionZellen kommt vielleicht eine ans Ziel. Gleichzeitig pausieren viele Zellen unterwegs – und das ist das eigentlich Gefährliche. Weil sie stammzellähnlich sind, können sie im Prinzip alle Plätze im Gewebe nutzen, an denen üblicherweise Stammzellen sitzen – und jederzeit wieder loswandern. Haben sie ihr Ziel erreicht, entwickeln sie sich wieder zu epithelialen Krebszellen, die sich vom Ursprungstumor unterscheiden und in der Lage sind, Metastasen zu bilden. Dies erklärt auch, warum MRT-Bilder nach einer Chemotherapie oftmals eine Heilung suggerieren und Monate später wieder massiv Metastasen zu verzeichnen sind.“

Wirkungsvolle Therapie

Proteo-Mimetika – so die Hoffnung der Wissenschaftler – könnten in jedem Stadium der Krebserkrankung angewandt werden. Ein ständiger Spiegel des Wirkstoffs, kombiniert mit Chemotherapien könnte die Metastasierung wirkungsvoll eindämmen. „Wir werden den Krebs damit nicht heilen“, so Dr. Kühne, „aber es ist möglicherweise ein Weg, um die Lebenserwartung von Krebspatienten deutlich zu erhöhen.“ Dass die stammzellähnlichen Zellen nicht liquidiert, sondern zum Verharren gebracht werden, ist nicht unbedingt ein Nachteil, wie der Forschungsgruppenleiter erklärt: „In dem Augenblick, wo die Zelle ernsthaft bedroht wird, versucht sie ganz intensiv biochemische Nebenwege einzugehen, die ihr das Überleben doch noch gestatten.“

Ob Proteo-Mimetika tatsächlich erfolgreich bei Krebspatienten eingesetzt werden können, gilt es allerdings noch mit klinischen Daten zu belegen. Eine Hürde könnte zudem darstellen, dass die Ena / VSAP-Proteine auch wichtig für Immunzellen sind, die ebenfalls beweglich sein müssen. Die Gabe von Proteo-Mimetika könnte also bedeuten, dass das Immunsystem dauerhaft unterdrückt sein würde – ähnlich wie bei Patienten, die mit einem transplantierten Organ leben.

Technologie als Plattform

„Wir haben gezeigt, dass der Ansatz funktioniert und verfügen über einen chemischen Baukasten, mit dessen Elementen wir verschiedenste krankheitsrelevante Protein-Protein-Wechselwirkungen beeinflussen können“, so Dr. Ronald Kühne. Um diese Technologie zu etablieren und einsetzen zu können, soll im ersten Schritt der „Proof of Concept“, also der Nachweis der Wirksamkeit, in einem Pilotprojekt erbracht werden. „Dies ist ein wichtiger Schritt, um unsere ‚Prinziplösung‘ als Plattformtechnologie zu etablieren und einen ersten Metastaseinhibitor präklinisch umfassend zu validieren“, so Dr. Kühne. Gleichzeitig sind die neuen chemischen Verbindungen, wenn sie nicht als spezifische, selektive Arzneimittel zusammengebaut werden, als potenzielle Wirkstoffmoleküle interessant. „Da sie, wie ein Naturstoff, direkt von biologisch aktiven Verbindungen abgeleitet sind, haben sie an sich ein Marktpotenzial. Wir planen, daraus Screening-Bibliotheken für Wirkstoffuntersuchungen zu erstellen.“
Die Gründungsförderung im Rahmen des „EXIST-Forschungstransfers“ des Bundesministeriums für Wirtschaft und Energie erscheint hier als eine sehr interessante Möglichkeit, die nötigen Finanzmittel für die Proof of Concept-Studien bereit zu stellen und damit die Basis für eine wirtschaftliche Verwertung der Innovation zu legen.

Text: Christine Minkewitz/BBB

Foto: Dr. Ronald Kühne, Leiter der Arbeitsgruppe „Computational Chemistry/Drug Design“ am Leibniz-Institut für Molekulare Pharmakologie (FMP) (Foto: Silke Oßwald/FMP)


Alle News im Überblick