Your selection

Research / 16.09.2021
Downtime at the nerve cell’s protein factories

A team led by MDC researcher Marina Chekulaeva has figured out why protein production slows down in the nerve cells of people suffering from Charcot-Marie-Tooth disease. This discovery could lead to a new therapeutic approach, the scientists report in the journal "Nucleic Acids Research".

Charcot-Marie-Tooth disease (CMT) is a rare hereditary condition. It occurs when genetic changes disrupt the transmission of nerve signals from the brain to the muscles of the extremities, particularly those of the lower limbs. This leads to a gradual loss of muscle tissue in the lower legs. Early symptoms of the disease, which include pain and difficulties walking, usually appear in childhood and adolescence. In Germany alone there are an estimated 30,000 people living with CMT.

Enzymes become altered

“We have known for some time that mutations in genes encoding enzymes called aminoacyl-tRNA synthetases (aaRSs) can cause CMT,” explains Dr. Marina Chekulaeva, head of the Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation Lab at the Berlin Institute for Medical Systems Biology (BIMSB), which is part of the Berlin-based Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC).

These enzymes are required for cellular protein production, which takes place in ribosomes, the cell’s protein factories. Their job involves aminoacylation binding an amino acid to another molecule, a so-called tRNA. This enables the individual amino acids to be linked together at the ribosomes to form a protein chain according to the genetic blueprint stored in the DNA.

Translation is impaired by mutations

“The paradox is that these mutations do not disrupt aminoacylation activity, but they do interfere with translation – the production of proteins at the ribosomes,” says Chekulaeva. “To understand this mechanism, my team and I took a close look at how mutations in glycyl-tRNA synthetase affect translation processes.” This enzyme is altered in patients with a common form of CMT disease known as CMT type 2D (CMT2D).

For their work, the researchers used ribosome profiling to evaluate ribosomal activity in detail. “This technique helps us determine things like the exact codon where protein production is halted, and quantify the frequency at which this occurs,” explains Samantha Mendonsa, the study’s first author and a doctoral student in Chekulaeva’s lab.

Protein chains are too short

“We found that the gene alteration in CMT patients initially results in a shortage of glycyl-tRNA available for translation,” says Mendonsa. “This causes ribosomes to stall their protein production at the sites where the amino acid glycine is to be added to the growing protein chain.” Elongation or lengthening of the protein chain is thus halted. “The pause in elongation at the glycine sites also induces an integrated stress response, leading to a disruption of translation initiation,” she reports. Protein production is reduced as a result.

Mendonsa and Chekulaeva are convinced that their findings can provide new avenues for therapies against CMT, for which there is currently no causal treatment. “One possibility would be the administration of tRNA to overcome its shortage in the nerve cells, thus alleviating ribosome pausing,” says Chekulaeva. “Another approach could be to use relevant therapeutic agents to suppress the integrated stress response.” Yet she says pursuing these avenues further is now a task for clinical researchers.

Open questions

“Our team is now interested, for example, in the still unanswered question of how and why ribosome pausing impairs the function of the motor and sensory nerve fibers that connect the brain and lower limbs,” Chekulaeva says. An answer to that question will likely be of great benefit to people with CMT.

Text: Anke Brodmerkel


Source: Press Release MDC
Downtime at the nerve cell’s protein factories

Overview News

News Buch Berlin

How to fill a heart

Heart failure with preserved ejection fraction was previously considered largely untreatable. An MDC team led by Professor Michael Gotthardt has now succeeded for the first time in improving cardiac f...

more ...

Eckert & Ziegler Partners with University Health Network and CanProbe to Advance PENTIXAFOR Imaging Diagnostic Tool for Wider Application

Eckert & Ziegler Group is pleased to announce their partnership today with the Canadian Molecular Imaging Probe Consortium (CanProbe), a leader in the advancement and commercialization of novel radiop...

more ...

Genome folding in the mouse brain

A team led by MDC researcher Ana Pombo has deciphered the 3D structure of the genome in three cell types of the mouse brain.

more ...

Events Buch Berlin

10.12.2021, 16:00
Karower Weihnachtsfreude - Überraschungen zur Adventszeit

11.12.2021, 10:00
Gesundheitswandern von Buch bis zur Aussichtsplattform Lietzengraben

Wanderung von ca. 7 km mit längeren Pausen, Picknick und Bewegungsübungen

more ...

11.12.2021, 19:00
Lesung im Trichter: Weihnachten kommt! ...eher als du denkst.

Eine sehr stille Heilige Nacht von und mit Pierre Sanoussi-Bliss

more ...

This website is supported by: